تأثیر زمان و شدت امواج مغناطیسی روز فازهای رشدی باکتری Escherichia coli

فرهاد نامداری، سید مسلم موسویان، محمد پخشی بور
1- دانشیار، گروه مهندسی برق قدرت، دانشگاه فنی، دانشگاه لرستان، خرم‌آباد، ایران
2- دانشجو دکتری، بیماری‌شناسی گیاهی، گروه گیاه‌پزشکی، دانشگاه اکبری تربیت معلم و منابع طبیعی، دانشگاه لرستان، خرم‌آباد، ایران
3- دانشجو دکتری، گروه مهندسی برق قدرت، دانشگاه فنی، دانشگاه لرستان، خرم‌آباد، ایران

چکیده
پیشنهالی: بررسی تأثیر امواج مغناطیسی بر رشد باکتری Escherichia coli (PTCC 1330) در میکروکشت‌ها. باکتری Escherichia coli در میکروکشت‌ها در غلظت متوسط ناحیه نشین و در همین میکروکشت‌ها در مدید مغناطیسی 0، 0.5، 1، 2، 3، 4 و 5 هرتز در مدید زمان‌های 0:24، 0:48، 1:24 و 2:3 ساعت قرار داده شد. در هر هشت ساعت، رسیدگی اتاق محیطی و تأثیر این امواج روی فازهای رشدی باکتری در قالب طرح‌های فاکتوریال تنظیم شد.

یافته‌ها: شدت میدان‌های 0.1، 0.1، 0.2، 0.2، 0.2، 0.2 و 0.2 هرتز باعث افزایش تعداد سلول باکتری Shewanella تا 50 هرتز روشن رشدی باکتری کاهش یافت. شدت میدان‌های 0.4، 0.4، 0.4، 0.4، 0.4 و 0.4 هرتز باعث افزایش در زمان فاز رشد باکتری Shewanella و میدان‌های 0.1، 0.1، 0.1 و 0.1 هرتز باعث افزایش در زمان فاز رشد باکتری Shewanella تا 100 هرتز این میزان با بیشترین غلظت خود رشد، ولی در میدان‌های 0.4 و 0.4 هرتز سرعت زمان تولید باکتری کاهش نشان داد.

بحث و نتیجه‌گیری: با توجه به اینکه باکتری Escherichia coli یک باکتری پروکاریوتیک و در این حال باکتری بسیار مهم در فعالیت‌های این است، می‌توان از نتایج این پژوهش در روند افزایش و کاهش جمعیت باکتری بهره جست.

ارائه مکاتبه: خرم‌آباد، دانشگاه لرستان، دانشکده فنی، گروه مهندسی برق

نامداری.f@lu.ac.ir

پیست الکترونیک: namdari.f@lu.ac.ir
مقدمه

در چند دهه اخیر مطالعه و تحقیق پیرامون اثرات میدان‌های الکترومغناطیسی روی موجودات زنده مورد توجه دانشمندان زیادی قرار گرفته است. در این زمینه، رشته‌های مانند بیومغناطیسی و بیوالکتریکی بهدست آمده است که در آن جنبه‌های مختلفی از موضوع مشخص و کلاسیفیک‌شده و محققین هرکدام در یکی از شاخه‌های آن مشغول به فعالیت هستند (1). در همین راستا علم پرسی و مطالعه پیرامون اثرات میدان‌های الکترومغناطیسی روی سلول‌های تباث‌پذیر و یوکاریوت‌ها مورد توجه است. میدان‌های الکترومغناطیسی با فرکانس بسیار بالا (کمتر از 300 هرتز) هستند که به عنوان موردنظر می‌باشد. دلیل اول این میدان‌ها روز سیستم‌های بیولوژیکی و دومین دلیل وجود این میدان‌ها در محیط زندگی انسان باعث استفاده از وسایل الکتریکی است (2). این میدان‌های مغناطیسی در شدت 5/10 2 هرتز اثر معنی‌داری روی مراکز کنترل عصبی انسان ندارد (3).

یکی از مباحثی که اخیراً دانشمندان به آن پرداخته‌اند، کاربرد امواج مغناطیسی در کنترل عوامل میکروبی می‌باشد. اگرچه تأثیر امواج ناشی از میدان‌های الکترومغناطیسی و الکترومغناطیسی بر انسان و سایر موجودات زنده مورد مطالعه و تحقیق دانشمندان علوم مختلف بوده است، اما این اثر بر میکوراگونیسم نسبت به سایر موج‌های ممکن می‌باشد. در میان مدل‌های موردنظر قرار گرفته است (4). این میدان‌های الکتریکی و مغناطیسی می‌توانند بر فعالیت بیولوژیکی موجودات زنده از طریق تغییر غلظت هورمون‌ها، فعالیت آنزیم‌ها، سیستم‌های انتقال بیون، اثرگذاری روی میکربیوتولوژی میکروارگانیسم‌ها و مواد دیگر تأثیر بگذارند (5). امواج الکترومغناطیسی با ایجاد اختلال در سیگنال‌های بیولزکتریک باکتری در طی تغییر

۱۱۲ / یافته، زره بیست و پنجم، پارس ۹۸
باکتری, در زمان‌های تیمار شده باکتری مزبور روی پلیت حاوی محیط کشت چند باکتری کشت داده شدند و جمعیت باکتری تخمین زده شد. در شرایطی که در تیمار اعمال شده باکتری زیاد بود و قابلیت شمارش روی محیط کشت چند نبود ابتدا از باکتری سری رفت گرفته شد و سپس کشت داده شد و در نهایت جمعیت دقیق باکتری شمارش شد. در نهایت با استفاده از فرمول زیر

\[GT = \frac{t}{3.3 \times \log D/B} \]

dو تعداد GT طول زمان تولید نسل، 1 زمان بین دو تسمیه سلولی، b تعداد باکتری در زمان دوم و B تعداد باکتری در زمان اول می‌باشد.

تجزیه آماری

داده‌های بدست‌آمده با استفاده از نرم‌افزار SPSS 19 و تجزیه آماری قرار گرفتن مقایسه‌ها با استفاده از آزمون توکی انجام داشتند. نمودارها با استفاده از نرم‌افزار Microsoft Office Excel 2015 رسم شدند.

یافته‌ها

تجزیه و ارتباط تأثیر فاکتورهای زمان و شدت میزان مغناطیسی اثر متقابل این دو فاکتور روی فاقدانه‌های رشد E.coli باکتری در سطح یک دارد. نتوانستن معنی‌داری را نشان داد (جدول 1).

شدت میزان‌های مختلف روی فاقدانه‌های رشد باکتری E.coli نشان داد که در شدت میزان‌های 10 هرتز بیشترین E.coli افزایش را در تعداد سلول‌های باکتری دارد و با دیگر تیمارهای شدت میزان‌های مختلف مشابهی در سطح یک دارد و ایجاد نمود. شدت میزان‌های 0.1، 0.5، 1، 10، 20، 40 و 50 هرتز بطور محدود باعث افزایش در مقدار تعداد سلول باکتری شدند و شدت میزان‌های 0.4 و 0.5 هرتز باعث کاهش جمعیت باکتری شدند. در بین این این E.coli باعث کاهش جمعیت باکتری شدند.
تیمارها شدت میدان ۳۰ هرتز بیشترین اثر منفی را روی گلگام‌های سلول باکتری گذشت و باعث کاهش معنی‌داری نسبت به تیمار شاده (شدت میدان‌سایه) در جمعیت باکتری شد (جدول ۲).
جدول ۱ تاثیر رشد واژنی تیمار شدت و مدت زمان میدان روی

لگاریتم تعداد سلول باکتری E. coli در فازهای رشد

<table>
<thead>
<tr>
<th>P-value</th>
<th>F اثر</th>
<th>نسبت</th>
<th>V(سب)</th>
<th>مقدار</th>
<th>اثر</th>
<th>T(سب)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۸۵۹/۴۰</td>
<td>۶/۶</td>
<td>۶/۶</td>
<td>۶/۶</td>
<td>۶/۶</td>
<td>۶/۶</td>
<td>۶/۶</td>
</tr>
<tr>
<td>۶۸۹/۳۸</td>
<td>۶/۶</td>
<td>۶/۶</td>
<td>۶/۶</td>
<td>۶/۶</td>
<td>۶/۶</td>
<td>۶/۶</td>
</tr>
<tr>
<td>۶۸۹/۳۸</td>
<td>۶/۶</td>
<td>۶/۶</td>
<td>۶/۶</td>
<td>۶/۶</td>
<td>۶/۶</td>
<td>۶/۶</td>
</tr>
<tr>
<td>۶۸۹/۳۸</td>
<td>۶/۶</td>
<td>۶/۶</td>
<td>۶/۶</td>
<td>۶/۶</td>
<td>۶/۶</td>
<td>۶/۶</td>
</tr>
</tbody>
</table>

جدول ۲ تأثیر شدت میدان‌های مختلف روی لگاریتم تعداد

سلول باکتری E. coli در فازهای رشد

<table>
<thead>
<tr>
<th>شدت میدان (هرتز)</th>
<th>لگاریتم تعداد سلول باکتری</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰۵۵</td>
<td>۰</td>
</tr>
<tr>
<td>۰۵۷</td>
<td>۰</td>
</tr>
<tr>
<td>۰۵۹</td>
<td>۰</td>
</tr>
<tr>
<td>۰۶۱</td>
<td>۰</td>
</tr>
<tr>
<td>۰۶۳</td>
<td>۰</td>
</tr>
<tr>
<td>۰۶۵</td>
<td>۰</td>
</tr>
<tr>
<td>۰۶۷</td>
<td>۰</td>
</tr>
<tr>
<td>۰۶۹</td>
<td>۰</td>
</tr>
<tr>
<td>۰۷۱</td>
<td>۰</td>
</tr>
<tr>
<td>۰۷۳</td>
<td>۰</td>
</tr>
<tr>
<td>۰۷۵</td>
<td>۰</td>
</tr>
<tr>
<td>۰۷۷</td>
<td>۰</td>
</tr>
<tr>
<td>۰۷۹</td>
<td>۰</td>
</tr>
</tbody>
</table>

از رشد تأخیری (Lag phase) فاز رشد شاده E. coli باکتری در فازهای رشدی نشان داد که در زمان روی E. coli باکتری میزان نسبت به میدان‌سایه میزان جمعیت باکتری رشد کاهشی در مرحله رشد باکتری نشان داده شد. تیمارها ۱۰ و ۲۰ هرتز باعث افزایش و تیمار با شدت میدان ۳۰ هرتز باعث کاهش در فاز رشد باکتری شدند. همچنین از شدت میدان‌های بکار گرفته شده روی رشد نمایی باکتری تغییری ایجاد نکرد و باکتری مورد مطالعه در همه تیمارها شدت میدان در مدت ۱۲ ساعت رشد نمایی خود را کامل کردند (نمودار ۱).

نمونه ۱ شدت میدان‌های مختلف مغناطیسی (هرتز) روی نمونه رشد باکتری E. coli در این نمونه نمودار نشان می‌دهد. تیمار شاده (بیشتر میزان مغناطیسی) است. اثر مدت زمان میدان مغناطیسی روی گلگام‌های رشد باکتری E. coli در فازهای رشدی نشان داد که در دوره زمانی دو اینتیم‌های مغناطیسی اثرات مشاهده شد. از نتایج به این نتیجه رسید که در مرحله فاز ناب تیمار باکتری قرار دارد این مقادیر طبیعی است. در همه زمان‌های باکتری با گرفتن شدت ۴ ساعت که فاز تأخیری رشد باکتری است مشاهده شد، هنگامی رشد باکتری در همه فازهای رشدی تفاوت معنی‌داری در سطح یک درصد با تیمار شاده نشان داد (جدول ۳).}

در نمونه ۲ اثر زمان‌های مختلف در یک میدان ثابت را روی رشد باکتری در نقشه گذشت. بیشترین
نوسانات در جمعیت باکتری در زمان 8 ساعت در شدت میدان مغناطیسی 5 می‌باشد که کاهش شدیدی در روند رشد جمعیت باکتری نشان داد. زمان‌های 12 و 16 ساعت نیز در شدت میدان 5 هرتز باعث کاهش نشان داد زیرا در شدت میدان 5 هرتز فاز تأخیری باکتری افزایش یافته است. ولی با توجه به اینکه در سایر زمان‌ها و در همین میدان باعث افزایش و چشمه‌گیری در رشد باکتری شد، اثر کلی اثر متفاوت این دو تیمار در رشد باکتری باکتری مشابه بود و تفاوت معنی‌داری با تیمار شاهد در سطح یک درصد نشان داد. همان‌طور که در نمودار 2 مشخص است تیمارهای 40 و 50 هرتز در همه زمان بکار گرفته شده، به‌جز زمان‌های که در محدوده فاز مرگ باکتری است (زمان 20 و 30 ساعت) باعث کاهش جمعیت باکتری شدند و میدان 10 هرتز در همه تیمارهای زمانی بیشترین افزایش را در نرخ رشد باکتری نشان داد و با همه تیمارهای شدت میدان تفاوت معنی‌داری در سطح یک درصد آماری ایجاد کرد (نن‌مودار 2).

جدول 3. تأثیر میدان میدان مغناطیسی روی تعداد سلول باکتری E. coli در فاز‌هایی شده

<table>
<thead>
<tr>
<th>رنگ</th>
<th>تعداد سلول باکتری (کلاک*ایمپ)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3.0</td>
<td>0.03</td>
</tr>
<tr>
<td>3</td>
<td>3.5</td>
<td>0.01</td>
</tr>
<tr>
<td>4</td>
<td>4.0</td>
<td>0.005</td>
</tr>
<tr>
<td>5</td>
<td>4.5</td>
<td>0.001</td>
</tr>
</tbody>
</table>

نتایج تجزیه واریانس تأثیر شدت میدان مغناطیسی روی میدان میدان شروع تیمیس سلول‌های باکتری باقی می‌ماند و میدان میدان مرگ‌دورن (Generation Time) در سطح 5 درصد تفاوت معنی‌داری را ایجاد کرد E.coli (جدول 4 و 5).

شدت میدان‌های مختلف مغناطیسی باعث تغییرات

جدول 4. تجزیه واریانس تأثیر شدت میدان مغناطیسی روی زمان مرگ‌دورن باکتری E.coli

<table>
<thead>
<tr>
<th>P-value</th>
<th>ترجمه</th>
<th>مجموع مراسته</th>
<th>F</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.01</td>
<td>0.005</td>
<td>2.54</td>
<td>0.05</td>
</tr>
<tr>
<td>0.01</td>
<td>0.005</td>
<td>0.001</td>
<td>3.54</td>
<td>0.01</td>
</tr>
<tr>
<td>0.005</td>
<td>0.001</td>
<td>0.000</td>
<td>4.54</td>
<td>0.005</td>
</tr>
</tbody>
</table>

#ایکس، ،و روزه پیست و کامب. 98
جدول 5. تجزیه و تحلیل تأثیر شدت میزان‌های مختلف E. coli (هرتز) روی زمان تقویت شدن نمای های باکتری

جدول 6. مقایسه میانگین تأثیر شدت میزان روی مدترمان تولید هر نسل و میزان باکتری در مرجع رشدی باکتری E. coli

در شدت میزان 10 هرتز باکتری هر 31/52 دقیقه یکی گزاره نسل تقویت شدند (تفاوت دو نسل سلول) داشت این در حالی بود که در تیمار شاهد باکتری هر 36/49 دقیقه یکی گزاره نسل انگیام داشت و به همین تیمار در سطح پنجم درصد تفاوت معنی‌داری نمود. بعد از تیمار 10 هورتز به ترتیب تیمارهای 40 و 1 هرتز کمترین زمان تولید و با به‌عبارت سریع ترین زمان تقویت دستاپی از شدن را نشان دادند. تیمارهای 40 و 50 هرتز باعث
تأثیر زمان و شدت امواج مغناطیسی روی فازهای رشدی باکتری اکسی‌هاینریکس

رشد داشته‌نداهند (15). در پژوهش دیگری آورده و همکاران بیان نمودند که میزان مغناطیسی با شدت 2 میلی تنسا به مدت 10 ساعت به ترتیب باعث کاهش و افزایش رشد باکتری اشترپکتیک می‌شود (22). این در حالی است که ناشی از همکاران در سال 2002 میلادی بیان داشته‌شدند آگاهی رشد باکتری اشترپکتیک می‌شود (23). همچنین می‌توان نشان داد که اعمال

پالس‌های میان مغناطیسی اثر کاستگی و کاهش تراکم باکتری E.coli را (24) با مقایسه این پژوهش‌ها با

پژوهش‌های دیگری. این مطالعه اکتشافی سه که می‌شود که میزان‌های مختلف مغناطیسی تأثیر متفاوت روی روند تغییرات رشد باکتری E.coli دارد.

در پژوهش حاضر مدت زمان قرارگیری سولل باکتری E.coli در میدان نیز مبنای فاکتور از عوامل پژوهش‌های E.coli باکتری بررسی شد و مشخص شد که هرچند که باکتری بیشتر در معرض این بروزهای مغناطیسی قرار بگیرند تغییرات رشده‌ای آن محسوس نمی‌باشد. در زمان‌های

روش 24 و 40 ساعت باکتری نسبت به رشد باکتری را کاهش داده و در این دو زمان به جز در میدان 40 و 50

هرتز، جمعیت باکتری نسبت به رشد باکتری شاهد افزایش نشان داد. تیمار‌های 30، 40 و 55 هرتز در همه زمان‌های گرفته شد، به جز زمان‌هایی که در محیط فاز مرگ

باکتری است (زمان 28 و 33 ساعت) باعث کاهش جمعیت باکتری شده‌اند و میدان 10 هرتز در همه

تیمارهای زمانی بیشتر افزایش را نشان داد در پژوهش مشابه عملیات میان مغناطیسی با

شده 5-12 میلی تسلا در مدت زمان 10-2 دقیقه باعث کاهش جمعیت باکتری E.coli هتروتروف شد (5).

اثر دیگری شدت میدان مغناطیسی روی سرعت زمان

نرخ تولید سولل باکتری است که با اعمال تیمارهای مختلف در فاز رشد نمایی و متغیر می‌باشد که

در E.coli میزان اثر میلاد باکتری شده‌است. در این

میزان سوپر مارک و کاهش

شده در صورتی که اعمال میدان E. coli جمعیت باکتری

117

پاکتی، روزه پیست و کم، بار 98
تنبیه زمان و شدت امواج مغناطیسی روی فازهای رشدی باکتری

مغناطیسی در شدت های بالا و در محدوده ۱۰ هرتز

اثرات افزاینده رشد دارد. البته این روند تغییرات رشدی

باکتری مورد مطالعه به مدت زمان اعمال میدان نیز

بستگی داشت. به توجه به نتایج پژوهش حاضر و با توجه

به اینکه باکتری E.coli یک باکتری بیماریزا و

رار عین حال باکتری بسیار مهم در امور پزوهشی و

مخصوصاً انتقال زنی باشد. می توان از نتایج این پژوهش

در روند افزایش و کاهش جمعیت باکتری بهره جست.

تشکر و قدردانی

این مقاله حاصل طرح تحقیقاتی به شماره

۱۲۶۸۹۷ مصوب دانشگاه لرستان که تحت حمایت

مادی و معنی دانشگاه لرستان می باشد که بدين و سپله

مراتب قدردانی به عمل می اید.
References

1. Fojt L, Strašák L, Vetterl V. Extremely-low frequency magnetic field effects on sulfate reducing bacteria viability. Electromagnetic biology and medicine; 2010; 29(4), 177-185.

15. Xu YB, Duan XJ, Yan JN, Du YY, Sun SY. Influence of magnetic field on activity of given anaerobic sludge. Biodegradation; 2009; 20(6), 875.
20. Dutreux N, Notermans S, Gongora-Nieto MM, Barbosa-Cánovas GV, Swanson BG. Effects of combined exposure of Micrococcus luteus to nisin and pulsed electric fields. International journal of food microbiology; 2000; 60(2-3), 147-152.
24. Li M. Sterilization of Escherichia coli cells by the application of pulsed magnetic field, Journal of Environmental Sciences, 2004, 16(2), 348–352.
Time and Intensity of Electromagnetic waves impacts on the Growth phase of Escherichia coli bacteria

Namdari F,*1 Moosavian M2 Bakhshipour M3
1. Assistant professor, Department of Electrical and Power Engineering, Faculty of Engineering, Lorestan University, Khorramabad, Iran, namdari.f@lu.ac.ir
2. Ph.D. Student, Dept. of Plant Protection, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
3. Ph.D. Student, Department of Electrical and Power Engineering, Faculty of Engineering, Lorestan University, Khorramabad, Iran

Received: 29 Dec 2018 Accepted: 2 Feb 2019

Abstract

Background: Electromagnetic fields have various effects on the biochemical and cellular behavior of microorganisms due to radiation. It is necessary to investigate more extensively the effects of these magnetic fields on some microorganisms, such as bacteria. The purpose of this study was tp investigate the effects of magnetic fields on Escherichia coli bacteria (PTCC 1330).

Materials and Methods: E.coli bacteria were prepared in liquid growth medium at the proper density. Then, the bacteria were placed in a magnetic field of 0, 1, 5, 10, 20, 30, 40 and 50 Hz at 0, 4, 8, 12, 16, 20, 24, 28 and 32 time intervals. Afterwards, their population was calculated, and the impact of these waves on the bacteria growth phases, based on the factorial pattern, was measured.

Results: Field intensities of 1, 5, 10 and 20 Hz caused an increase in the number of bacteria cells. With increasing field intensity to 50 Hz, the growth of bacteria was reduced. Field intensities of 5, 30, 40 and 50 Hz caused an increment in the time of the lag phase, and field intensities of 1, 10 and 20 Hz caused an increment in the time of the stationary phase. At 1 to 30 Hz field intensities, the duration time of each cell division was reduced, and at 10 Hz field intensity, this reduction reached a minimum. But at a field intensity of 40 and 50 Hz, the time velocity of bacteria reproduction decreased.

Conclusion: Given that E.coli bacteria is a pathogen, and at the same time a very important bacteria in scientific activities, the results of this study could be used in procedures to increase and decrease the population of this bacteria population.

Keywords: Stationary phase, Log growth, Bacterial disease, Microorganism, Anti-bacterial.